Cross - Pose Facial Expression Recognition
نویسندگان
چکیده
¨ Ozgür for participating in my thesis jury, their criticism and valuable feedback. Engin, Kaan Bekmezci, and Safiye C ¸ elik for always being there to have fun with. I am especially grateful to my dear friend, Beyza Ermi¸s for alleviating the burden of this painful process. I would also like to thank the members of MediaLab and PILAB for providing an enjoyable working environment. I would like to express my deepest gratitude to my parents S ¸aziye and Beytul-lah Güney, and my sister Bü¸sra Güney for their endless love, support and patience throughout this process. I am specifically grateful to N. Murat Arar. I honestly could not bear the burden without his support and motivation. iv ABSTRACT CROSS-POSE FACIAL EXPRESSION RECOGNITION Automatic facial expression recognition is a popular research topic due to its interesting applications in a wide variety of areas. The existing studies have achieved high accuracies in various formulations of the same problem. One direction which is not fully explored is multi-view facial expression recognition. Variations caused by different poses impose extra burden on the task of recognizing expressions, which is already a difficult problem due to large differences across subjects. In this thesis, we present a method to recognize six prototypic facial expressions of an individual across different pose angles. We use Partial Least Squares (PLS) to map the expressions from different poses into a common subspace, in which correlation between them is maximized. Recently, PLS has been successfully used for pose invariant face recognition problem. We show that, PLS can be effectively used for facial expression recognition across poses by training on coupled expressions of the same identity from two different poses. This way of training lets the learned bases model the differences between expressions of different poses by excluding the effect of the identity. We first align the faces and then extract block features around two eyes and the mouth on the aligned image. We experiment with Gabor filters and direct intensity values for local face representation. We demonstrate that two representations perform similarly in case frontal is the input pose, but Gabor representation outperforms intensity representation for other pose pairs. We also perform a detailed analysis of the parameters used in the experiments to show their effects on the results and to find the optimal ones for the expression recognition problem.
منابع مشابه
Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملSemi-supervised Facial Expression Recognition Algorithm on The Condition of Multi-pose
A major challenge in pattern recognition is labeling of large numbers of samples. This problem has been solved by extending supervised learning to semi-supervised learning. Thus semi-supervised learning has become one of the most important methods on the research of facial expression recognition. Frontal and un-occluded face images have been well recognized using traditional facial expression r...
متن کاملCross-pose Facial Expression Recognition
In real world facial expression recognition (FER) applications, it is not practical for a user to enroll his/her facial expressions under different pose angles. Therefore, a desirable property of a FER system would be to allow the user to enroll his/her facial expressions under a single pose, for example frontal, and be able to recognize them under different pose angles. In this paper, we addre...
متن کامل